來源:幼教網(wǎng) 2018-03-14 21:55:57
(3)每條線所包圍的點(diǎn)子數(shù)與前面研究的一組正方形點(diǎn)陣的點(diǎn)子數(shù)有什么關(guān)系?(正好是第一到第五個點(diǎn)陣的點(diǎn)子數(shù)。)
。ǖ诙⑷齻問題需要老師引導(dǎo),學(xué)生自己難以發(fā)現(xiàn),尤其是第三個問題,學(xué)生很難想到它們和開始時依次出現(xiàn)的幾個正方形點(diǎn)陣的點(diǎn)數(shù)之間的關(guān)系。當(dāng)學(xué)生想不到這種聯(lián)系時,是否一定要引導(dǎo)?)
。4)思考:表示這個正方形點(diǎn)陣的點(diǎn)數(shù)的算式有什么特點(diǎn)?
。ㄟ@個點(diǎn)陣的點(diǎn)子總數(shù)可以看作是連續(xù)奇數(shù)的和。)
。5)如果按這樣的劃分方法劃分第六個正方形點(diǎn)陣,它的點(diǎn)數(shù)該如何表示?
1+3+5+7+9+11 = 36;
。6)前面老師是把這個5×5的正方形點(diǎn)陣用折線進(jìn)行了劃分,你們還有哪些不同的劃分的方法?在用算式表示上有什么規(guī)律?
學(xué)生的劃分有以下幾種
、贆M向劃分:用算式表示為5+5+5+5+5;
、谪Q向劃分:用算式表示為5+5+5+5+5;
、坌毕騽澐郑河盟闶奖硎緸1+2+3+4+5+4+3+2+1;
至于前面兩種方法,都可以簡單地表示為:5×5;重點(diǎn)引導(dǎo)學(xué)生討論第三種劃分方法,觀察這個算式,你們發(fā)現(xiàn)了什么?
學(xué)生的發(fā)現(xiàn)如下
算式里最大的數(shù)是5;
從1開始加到5再加回到1;
這個算式是兩邊對稱的;
這個點(diǎn)陣的點(diǎn)數(shù)是中間那個數(shù)字5乘5的積;
教師引導(dǎo):照這樣的規(guī)律類推,第六個正方形點(diǎn)陣的點(diǎn)數(shù)如何表示?第9個呢?第n個呢?
(在這里把尋找不同劃分方法的任務(wù)交給學(xué)生,既是學(xué)生前面探究過程思維的延續(xù),又體現(xiàn)了學(xué)生學(xué)習(xí)的自主性,還用另一種方式解讀了“練一練”中的第一題。培養(yǎng)了學(xué)生從不同的角度去發(fā)現(xiàn)問題,總結(jié)概括規(guī)律的能力。)
三、延伸應(yīng)用,形成策略
1、除了我們剛才研究的正方形點(diǎn)陣,請大家猜猜看,還會有什么形狀的點(diǎn)陣呢?
(學(xué)生列舉了長方形點(diǎn)陣、三角形點(diǎn)陣、圓形點(diǎn)陣、橢圓形點(diǎn)陣等等。)
2、請大家嘗試運(yùn)用前面學(xué)會的方法探究長方形點(diǎn)陣規(guī)律。
。1)小組合作研究:如何用算式表示每個長方形點(diǎn)陣的點(diǎn)子數(shù)?
學(xué)生通過討論很快達(dá)成共識
1×2;2×3;3×4;4×5;
。2)請你獨(dú)立畫出第五個長方形點(diǎn)陣并用算式表示出點(diǎn)數(shù)。
。▽W(xué)生獨(dú)立畫圖并寫出算式,互相交流。)
算式表示為:5×6;
。3)思考討論:你們覺得自己所寫的算式中的數(shù)字與圖形中的點(diǎn)子之間有什么關(guān)系?
。▽W(xué)生的發(fā)現(xiàn)為:乘法算式中的第二個因數(shù)總是比第一個因數(shù)多 1,第一個因數(shù)是長方形點(diǎn)陣的豎排點(diǎn)數(shù),第二個因數(shù)是長方形點(diǎn)陣的橫排點(diǎn)數(shù)。并沒有發(fā)現(xiàn)第一個因數(shù)與點(diǎn)陣序號間的關(guān)系,因此,當(dāng)要求他們寫出18個點(diǎn)陣的點(diǎn)數(shù)時,出現(xiàn)了兩種不同的答案:17×18、18×19。在爭論各自的理由時,學(xué)生的注意力才聯(lián)系到了點(diǎn)陣的序號與算式的關(guān)系,從而確定了正確答案。)
。4)照這樣繼續(xù)寫,你能寫出第n個長方形點(diǎn)陣的點(diǎn)數(shù)嗎?
學(xué)生可以很順利地寫出:n×(n+1)。
3、看來對于任何一個點(diǎn)陣,只要我們認(rèn)真觀察研究,總能發(fā)現(xiàn)其獨(dú)特的規(guī)律。在小組內(nèi)研究三角形點(diǎn)陣中的規(guī)律,要求
(1)個人思考活動:觀察給出的四個三角形點(diǎn)陣的規(guī)律,畫出第五個三角形點(diǎn)陣。
(2)小組討論:對自己畫出的第五個三角形點(diǎn)陣進(jìn)行劃分,你能想到哪些不同的劃分方法?分別用算式表示點(diǎn)數(shù)。
。▽W(xué)生活動)
全班交流
劃分一:橫向劃分,1+2+3+4+5=15;
劃分二:豎向劃分,1+2+3+4+5=15;
劃分三:斜向劃分,1+2+3+4+5=15;
劃分四:折線劃分,1+5+9=15;
。▽τ谇懊娴娜N劃分方法,都在我的預(yù)設(shè)之內(nèi),學(xué)生到此,已經(jīng)很輕松地用語言表述出自己的想法:這樣的三角形點(diǎn)陣的點(diǎn)數(shù)是從1開始的連續(xù)自然數(shù)的和。而對于第四種劃分方法,是我沒有想到的。有一個孩子卻用非常強(qiáng)烈地要求,表達(dá)了自己的這種劃分方法,并且說出了這個算式依次遞加4的規(guī)律。)
4、同學(xué)們真了起!真正具有未來數(shù)學(xué)家的風(fēng)范,用自己的聰明才智,發(fā)現(xiàn)并總結(jié)了各個不同的點(diǎn)陣圖中隱藏的規(guī)律。那么你覺得應(yīng)該從哪些方面來探究點(diǎn)陣的規(guī)律?
學(xué)生交流
仔細(xì)觀察點(diǎn)陣的形狀;
數(shù)清每一行的點(diǎn)子數(shù);
看清前后兩個點(diǎn)陣的變化……
(在這里不需要學(xué)生說出多么專業(yè)的、深奧的數(shù)學(xué)原理,只是引導(dǎo)學(xué)生對自己探究性學(xué)習(xí)方法的一個總結(jié),盡管語言可能不夠簡練,總結(jié)不夠到位,只要學(xué)生用自己的語言在表述,就是對學(xué)生思維訓(xùn)練的一個提升,一種飛越。)
四、課堂總結(jié)
1、點(diǎn)陣的知識在生活中有著廣泛的應(yīng)用,比如北京奧運(yùn)會開幕式上的“擊缶表演”、“太極表演”等,都是把一個人看作了一點(diǎn),來排列有規(guī)律的隊形。你還知道什么地方運(yùn)用了點(diǎn)陣的相關(guān)知識?
學(xué)生交流
五子棋、閱兵式的方隊、節(jié)日的花壇……
2、課后繼續(xù)搜集點(diǎn)陣的相關(guān)資料,下節(jié)課繼續(xù)交流。
(在這里,把學(xué)生的課堂學(xué)習(xí)延伸到生活,鏈接到學(xué)生已有的相關(guān)生活經(jīng)驗(yàn),然后讓學(xué)生在生活中繼續(xù)尋找哪里用到點(diǎn)陣的知識,體現(xiàn)了數(shù)學(xué)與生活的密切聯(lián)系,數(shù)學(xué)來源于生活,又應(yīng)用于生活。)
相關(guān)推薦:
小升初試題、期中期末題、小學(xué)奧數(shù)題
盡在奧數(shù)網(wǎng)公眾號
歡迎使用手機(jī)、平板等移動設(shè)備訪問幼教網(wǎng),幼兒教育我們一路陪伴同行!>>點(diǎn)擊查看